Elliptic pseudo differential operators degenerate on a symplectic submanifold

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic geometry and positivity of pseudo-differential operators.

In this paper we establish positivity for pseudo-differential operators under a condition that is essentially also necessary. The proof is based on a microlocalization procedure and a geometric lemma.

متن کامل

Cohomologies and Elliptic Operators on Symplectic Manifolds

In joint work with S.-T. Yau, we construct new cohomologies of differential forms and elliptic operators on symplectic manifolds. Their construction can be described simply following a symplectic decomposition of the exterior derivative operator into two first-order differential operators, which are analogous to the Dolbeault operators in complex geometry. These first-order operators lead to ne...

متن کامل

Hardy Type Inequalities Related to Degenerate Elliptic Differential Operators

We prove some Hardy type inequalities related to quasilinear second order degenerate elliptic differential operators Lpu := −∇ ∗ L(|∇Lu| ∇Lu). If φ is a positive weight such that −Lpφ ≥ 0, then the Hardy type inequality c ∫ Ω |u| φp |∇Lφ| p dξ ≤ ∫

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1976

ISSN: 0002-9904

DOI: 10.1090/s0002-9904-1976-14140-7